
Building Scalable Systems from
Startups to Enterprises

Email: {anything}@jedberg.net

Twitter: @jedberg

Web: www.jedberg.net

Facebook: facebook.com/jedberg

Linkedin: www.linkedin.com/in/jedberg

Jeremy Edberg
Founder and CEO

MinOps
https://minops.com

https://sql.bot

mailto:%7Banything%7D@jedberg.net?subject=
http://www.jedberg.net
http://www.linkedin.com/in/jedberg
http://minops.com
https://sql.bot

If it won’t
scale it’ll

fail.

About me

Netflix Countries

0

10

20

30

40

50

60

70

2010 2011 2012 2013 2014 2015

Starting with the cloud

Monthly Page Views and
Costs

US$20 000,00

US$42 000,00

US$64 000,00

US$86 000,00

US$108 000,00

US$130 000,00

200M

420M

640M

860M

1 080M

1 300M

Mar Apr May Jun Jul Aug Sep OctNovDec Jan Feb Mar Apr

Monthly Page Views and
Costs

US$20 000,00

US$42 000,00

US$64 000,00

US$86 000,00

US$108 000,00

US$130 000,00

200M

420M

640M

860M

1 080M

1 300M

Mar Apr May Jun Jul Aug Sep OctNovDec Jan Feb Mar Apr

reddit gold is
launched

Cloud Native

10s of thousands of instances,
thousands created and removed

daily

Thousands of storage nodes,
petabytes of data, nodes can be

removed without harm

(Some folks call this Microservices)

Movie
Ratings

Personalizati
on Engine User Info Movie

Metadata
Similar
Movies Reviews A/B Test

Engine

Discovery
API

Streaming
API

Movie
Ratings

Personalizati
on Engine User Info

Movie
Metadata

Similar
Movies

Reviews

A/B Test
Engine

Discovery
API

Streaming
API

Content
Encoding

CDN
Management

QOS
LoggingDRM

OpenConnect
Edge

Locations

Browse

Play

Watch

Advantages to a Service Oriented
Architecture

• Easier auto-scaling

• Easier capacity planning

• Identify problematic code-paths more easily

• Narrow in the effects of a change

• More efficient local caching

• Services are built by different
teams who work together to
figure out what each service will
provide.

• The service owner publishes an
API that anyone can use and
returns proper response codes

Highly aligned, loosely
coupled

Mature
companies spend

25% of their
engineering

resources on
their internal

platform

It’s all about building a
culture around DevOps

My DevOps way

• Everything is “built for three”

• Fully automated build tools to
test and make packages

• Fully automated deployments
and testing

• Independent teams responsible for
both Dev and Ops

• Redundancy through multi-region
deployment

• A team that builds tools to make all
this possible.

My DevOps way

• Hire responsible adults and keep
rules and policies to a minimum

• Developers can change any code in
production at any time

• And things don’t break (usually)

Freedom and Responsibility

• Developers deploy when they want

• They also manage their own capacity
and autoscaling

• And fix anything that breaks at 4am!

Freedom and Responsibility

Freedom and Responsibility

Developers own their product
from beginning to end

If the customer isn’t happy, the
developer shouldn’t be happy

Policies
(How They Usually Work)

• Prescriptive

• Inflexible

• Determined by others

• Slow to change

Policies
@nflx

Policies
@nflx

• Descriptive

• As flexible as we are

• Describe what we
choose to do/get

• Evolve quickly

Setting up your infrastructure

Infrastructure as Code
• Changes are routine, small,

easy, and repeatable

• Resources are easily
managed by users and
disposable

• Enables continuous
deployment and
improvement

• Solutions can be easily
tested, measured, and then
rolled back

Automate all the things!

http://hyperboleandahalf.blogspot.com/2010/06/this-is-why-ill-never-be-adult.html

http://hyperboleandahalf.blogspot.com/2010/06/this-is-why-ill-never-be-adult.html

• Application startup

• Configuration

• Code deployment

• System
deployment

Automate all the things!

• Losing track of servers
and resources

• Configuration drift

• Snowflakes

• Fear of a fully
automated system
(lack of trust in oneself)

Infrastructure as Code
Challenges

Actionable Metrics

Actionable Metrics

Actionable Metrics

Actionable Metrics

Actionable Metrics

Self Serve is the Key

• Let developers choose what
metrics to submit

• What graphs they put on
their dashboards

• What to alert on

• They are closest to the app,
so they know best

• Allows business metrics to
be tracked easily

• Can be very powerful
combined with decorators

Self Serve is the Key

Choose business metrics,
not machine metrics

Choose groups of
machines, not individual

machines.

Alert on increase of
failure, not lack of success

Increase in 500s Decrease in 200s

👍 👎

P50, P90, P99

P50, P90, P99

0

15

30

45

60

1m 2m 3m 4m 5m 6m 7m 8m 9m 10m 11m 12m 13m 14m 15m

P50 P90 P99

You can estimate percentiles on
large (or streaming) datasets

• t-Digest

• Trades accuracy for speed
and memory footprint

• Actually more accurate
with larger datasets

• Error is worse at 50th
percentile than at 95th or
5th

Image from elastic.co

http://elastic.co

Anscombe's quartet

Anscombe's quartet

Mean of x 9

Sample variance of x 11

Mean of y 7,50

Sample variance of y 4,125

Correlation between x and y 0,816

Linear regression line y = 3.00 + 0.500x

Coefficient of determination of the linear regression 0,67

https://en.wikipedia.org/wiki/Mean
https://en.wikipedia.org/wiki/Variance
https://en.wikipedia.org/wiki/Correlation
https://en.wikipedia.org/wiki/Linear_regression
https://en.wikipedia.org/wiki/Coefficient_of_determination

Use queues as often as
possible

Put Queues
Everywhere and then

Monitor Queue
Lengths

Queuing

• Queue anything you are
writing to a data store

• Monitor your queue
lengths for great insight
and scaling!

0
2
4
6
8

10
12
14
16
18

1 3 5 7 9 11 13 15 17 19

Items

Seconds

Queue Depth

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

10

20

30

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Cumulative Flow Diagram

Items

Seconds

Arrivals

Departures

Capacity utilization increases
queues exponentially

• Every time you reduce the excess capacity
by 1/2, you double the average queue size.

• This has a direct effect on the ratio of wait
time to work time for a single work unit

• Use this to balance cost vs. latency
0
2
4
6
8

10

10 20 30 40 50 60 70 80 90 100

• Variability increases
queue sizes linearly

• Operating at high
utilization increases
variability

The price of
variability

The price of
variability

The price of
variability

Fast Medium Slow

Chaos Engineering

• Simulate things
that go wrong

• Find things that
are different

Two most important
things to test

Instance Loss
Increased Latency

All systems choices
assume some part will

fail at some point.

• Simulate things
that go wrong

• Find things that
are different

The Monkey Theory

• Chaos -- Kills random
instances

• Chaos Gorilla -- Kills zones

• Chaos Kong -- Kills regions

• Latency -- Degrades
network and injects
faults

• Conformity -- Looks for
outliers

The simian army

• Circus -- Kills and launches
instances to maintain zone balance

• Doctor -- Fixes unhealthy
resources

• Janitor -- Cleans up unused
resources

• Howler -- Yells about bad things
like Amazon limit violations

• Security -- Finds security issues and
expiring certificates

Chaos Monkey

• The first simian

• Randomly kills instances
in production

• Used to catch a lot of
errors, now everyone
builds around it.

Chaos Gorilla

• Kills whole zones
(datacenters)

• Finds errors with
imbalanced request rates
and data synchronization
problems

• Also finds missing and bad
fallbacks and backoffs.

Chaos Kong

• Shifts traffic from
one region to
another

• Find scaling
misconfigurations,
load shedding issues
and load balancer
issues.

Latency Monkey

• Injects random latency
into network calls

Janitor Monkey

• Cleans up
unused
resources

Howler Monkey

• Complains about things you
don’t have control over and
require human intervention

• ex. Amazon limits

• Have multiple copies of
all data

• Keep those copies in
multiple datacenters

• Avoid keeping state on a
single instance

• No secret keys on the
instance

Best Practices for Data

• What went wrong?

• How could we have detected it sooner?

• How could we have prevented it?

• How can we prevent this class of
problem in the future?

• How can we improve our behavior for
next time?

Ask the key questions:
Incident Reviews

Serverless computing is all about
speeding up development by allowing

rapid iteration and removing
management overhead

Remote Work

Remote Policy vs Remote
Work

• Your culture needs to be
“Remote First”. You can’t just
dictate culture through policy

• You can’t just have an odd
person out, or it will fail

• reddit

Distributed Computing and a
Distributed Workforce

• The two go hand in hand
when you have a good
distributed systems culture

• Microservices and Micro
Teams

Timezones Matter Less, but
Still Matter

• There needs to be some overlap
to get things done

• More than about nine hours span
across the company becomes
tough to deal with

• At least try to have people who
work on the same things overlap
a few hours a day

Large Open Source Projects
are a Great Model

• The Linux Kernel

• Motivated people who
communicate only via
email and chat.

Pulling it all together

• Use the cloud

• Microservices and DevOps

• Empowered engineers

• Infrastructure Automation

• Monitoring the right things

• Chaos testing and reliability

• Serverless

• Remote first culture

Questions?

Email: {anything}@jedberg.net

Twitter: @jedberg

Web: www.jedberg.net

Facebook: facebook.com/jedberg

Linkedin: www.linkedin.com/in/jedberg

Company: minops.com

mailto:%7Banything%7D@jedberg.net?subject=
http://www.jedberg.net
http://www.linkedin.com/in/jedberg
http://minops.com

